QUARKONIUM AT FINITE TEMPERATURE *

P. PETRECZKY †

Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

I discuss quarkonium spectral functions at finite temperature reconstructed using the Maximum Entropy Method. I show in particular that the J/ψ survives in the deconfined phase up to $1.5T_c$

The study of quarkonium system at finite temperature has been a subject of considerable interest since the work of Matusi and Satz ¹, but a first principle calculation of quarkonium properties at non-zero temperature was missing. It was shown, however, that the application of the Maximum Entropy Method (MEM) can make such calculation possible ². The method have been successfully applied at zero ² as well as at finite temperature ³.

I am going to discuss charmonium spectral function calculated with MEM on $48^3 \times N_\tau$ lattices at lattice spacing $a^{-1} = 4.86 GeV$ and $N_\tau = 24,16$ and 12 corresponding to temperatures $0.75T_c$, $1.12T_c$ and $1.5T_c$ (T_c being the deconfinement temperature). The results for the vector channel are shown in the Figure. As one can see the J/ψ

seems to survive up to temperatures $1.5T_c$. Similar calculation have been performed in the scalar and axial vector channels which correspond to the P-state charmonia, but no peak was found there.

References

- 1. T. Matsui and H. Satz, Phys. Lett. B178 (1986) 416
- 2. M. Asakawa et al, Prog. Part. Nucl. Phys. 46 (2001) 459
- F. Karsch et al, Phys. Lett. B530 (2002) 147; S. Datta et al, hep-lat/0208012;
 M. Asakawa and T. Hatsuda, hep-lat/0308034

^{*}Based on work done in collaboration with S. Datta, F. Karsch and I. Wetzorke. †Goldhaber fellow, supported under contract DE-AC02-98CH10886 with the U.S. Department of Energy.

		•			
					:
÷					
				·	